Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 951-960, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621902

RESUMO

The chemical constituents of ethyl acetate from Hypericum himalaicum were isolated by silica gel column chromatography, gel column chromatography, and high-performance liquid chromatography. The structure of the isolated compounds was identified by modern spectral techniques(NMR, MS, IR, and UV), and the potential anti-inflammatory targets and action pathways were analyzed and predicted by network pharmacology and molecular docking methods.Ten compounds were isolated from H. himalaicum and identified as 5,9,11-trihydroxy-3,3-dimethyl-3H,8H-benzo[6,7][1,4]dioxepino[2,3-f]chromen-8-one(1), betulinic acid(2), demethyltorosaflavone C(3), kaempferol(4), quercetin(5), hyperwightin B(6), toxyloxanthone B(7), 1,7-dihydroxy-xanthone(8), emodin(9), and 1,7-dihydroxy-4-methoxy-xanthone(10). Among them, compound 1 was a new compound, and compounds 2-10 were isolated from H. himalaicum for the first time. Network pharmacology screened 60 key anti-inflammatory targets. By acting on TNF, AKT1, CASP3, and other key targets, involving PI3K-AKT signaling pathway, IL-17 signaling pathway, VEGF signaling pathway, MAPK signaling pathway, and other signaling pathways, and phosphorylation, cell migration and movement, protein tyrosine kinase, and other biological processes were regulated to achieve anti-inflammatory effects. The results of molecular docking show that the above components have good binding properties with the core targets.


Assuntos
Medicamentos de Ervas Chinesas , Hypericum , Xantonas , Farmacologia em Rede , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Anti-Inflamatórios/farmacologia , Proteínas Proto-Oncogênicas c-akt
2.
Front Plant Sci ; 13: 905275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712557

RESUMO

Roots of Euphorbia fischeriana and Euphorbia ebracteolata are recorded as the source plant of traditional Chinese medicine "Langdu," containing active ingredients with anticancer and anti-AIDS activity. However, the two species have specific patterns in the graphic distribution. Compared with E. ehracteolata, E. fischeriana distributes in higher latitude and lower temperature areas and might have experienced cold stress adaptation. To reveal the molecular mechanism of environmental adaptation, RNA-seq was performed toward the roots, stems, and leaves of E. fischeriana and E. ehracteolata. A total of 6,830 pairs of putative orthologs between the two species were identified. Estimations of non-synonymous or synonymous substitution rate ratios for these orthologs indicated that 533 of the pairs may be under positive selection (Ka/Ks > 0.5). Functional enrichment analysis revealed that significant proportions of the orthologs were in the TCA cycle, fructose and mannose metabolism, starch and sucrose metabolism, fatty acid biosynthesis, and terpenoid biosynthesis providing insights into how the two closely related Euphorbia species adapted differentially to extreme environments. Consistent with the transcriptome, a higher content of soluble sugars and proline was obtained in E. fischeriana, reflecting the adaptation of plants to different environments. Additionally, 5 primary or secondary metabolites were screened as the biomarkers to distinguish the two species. Determination of 4 diterpenoids was established and performed, showing jolkinolide B as a representative component in E. fischeriana, whereas ingenol endemic to E. ebracteolate. To better study population genetics, EST-SSR markers were generated and tested in 9 species of Euphorbia. A total of 33 of the 68 pairs were screened out for producing clear fragments in at least four species, which will furthermore facilitate the studies on the genetic improvement and phylogenetics of this rapidly adapting taxon. In this study, transcriptome and metabolome analyses revealed the evolution of genes related to cold stress tolerance, biosynthesis of TCA cycle, soluble sugars, fatty acids, and amino acids, consistent with the molecular strategy that genotypes adapting to environment. The key active ingredients of the two species were quantitatively analyzed to reveal the difference in pharmacodynamic substance basis and molecular mechanism, providing insights into rational crude drug use.

3.
Zhongguo Zhong Yao Za Zhi ; 43(23): 4599-4607, 2018 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-30717548

RESUMO

Lepidium meyenii(maca)was a herbaceous plant of the family Cruciferae. It is native to the andes region of South America where the local people had been growing and consuming maca for centuries. The unique chemical composition and physiological function of maca were widely concerned worldwide. It was introduced to China in 2002, and were cultivated successfully in Yunnan, Tibet, Sichuan, Jilin and other places with a certain size. Maca contained not only rich nutrition such as protein, vitamin and mineral matter, but also lots of secondary metabolites as maca alkaloids, glucosinolates, volatile oils, sterols polyphenols and macaenes. Numerous studies suggested that maca may serve effects in resisting oxidation, fatigue resistance, raising fertility, regulating endocrine, enhancing immunity, tumour suppression, treating osteoporosis, regulate blood sugar and protection of nervous system. Maca was approved by the Ministry of Health as a new resource food in 2011, and its related products include food, health foods, cosmetics, etc. Certain exploratory researches were carried to take better advantage of maca's medicinal value. This paper briefly reviewed the research and application progress of maca in recent years from the aspects of botany, chemical composition, function, resources situation and related products development, which was supposed to provide reference for scientific research and utilization of maca.


Assuntos
Lepidium , China , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA